Semester:	08					
Course Code:	ZOOL 42902					
Course Name:	Immunology					
Credit Value:	02					
Status:	Optional					
Pre-requisites:	ZOOL 21702 and ZOOL 21711					
Co-requisite:	None					
Hourly Breakdown:	Theory	Practical	Independent Learning			
	24	18	58			

Intended Learning Outcomes:

At the completion of this course unit, the student will be able to:

- 1. describe the development and elements of immune system with special reference to humans,
- 2. explain the key processes involved in generation and maintenance of immune functions,
- 3. discuss the immunological basis of a disease, transplantation, hypersensitivity, biological therapy and vaccine development,
- 4. discuss the importance of immunology in contemporary sciences and human health and,
- 5. conduct histological analysis of immune system structures and immunoassays.

Course Content:

Overview to immune system. Cell receptors and signaling: cytokines, chemokines, antibodies, T and B cell receptors. Organization and expression of lymphocytes receptor genes. Major histocompatibility complex and antigen presentation. Signal transduction and generation of memory: T and B cells development, differentiation, activation and memory. Immune cell behavior in space and time. Cell and antibody-mediated effector functions. Antibody and immune complex-mediated hypersensitivity reactions. Immunodeficiency disorders. Tolerance and autoimmunity. Immunological basis of selected infectious diseases. Transplantation and cancer immunology. Immunotherapy. Conventional and next-generation vaccines and vaccine development. Antibody generation and immunoassays. Experimental immunological models. Current topics in immunology.

Practical sessions on histology of immune-competent organs of selected vertebrates. Selected haematological and serological assays for evaluating immune responses. Study visit at a clinical immunodiagnostic laboratory.

Teaching /Learning Methods:

A combination of lectures, laboratory practical sessions, computer simulations and online resources.

Assessment Strategy:

Continuous assessment and end of semester examination. Percentage given for each subcomponent indicates the percent contribution to the final marks.

Continuous Assessment		Final Assessment			
40 %		60 %			
Details:	The	ory	Practical	Other	
Presentations 10 %	60	%	-	-	
Assignments 10 %					
Laboratory reports 10 %					
Study visit report 10 %					

Recommended Readings:

- 1. Owen, J., J. Punt, P. Jones & S. Stanford (2019). Kuby Immunology. 8th edition, W.H. Freeman publishers.
- Paul, W.E. (2012). Fundamental Immunology. 7th Edition, Lippincott Williams and Wilkins.
- 3. Selected scholarly review and research articles on immunology.