Semester	4					
Course Code	ENCM 22762					
Course Name	Air Quality Management					
Credit Value	2					
Status	Compulsory					
Pre-requisites	ENCM 12742					
Co-requisites	None					
Hourly Breakdown	Theory	Practical	Independent Learning			
	26	12	62			

Intended Learning Outcomes:

After completion of this course unit, the student will be able to;

- 1. explain the dispersion of air pollutants,
- 2. describe the sink and natural removal processes of air pollutants,
- 3. describe the approaches of air quality monitoring and assessment,
- 4. describe the strategies of air pollution control and management, and
- 5. demonstrate skills in evaluating the strategies of air pollution control and management.

Course Content:

Criteria and non-criteria (including other toxic and hazardous) air pollutants and an overview on air quality management; Sinks and removal processes of air pollutants; Air pollution meteorology: Inversions and their types, sea and land breezes; Major dispersive characteristics of the atmosphere: valley effect, mountain effect, chimney effect, urban heat islands effect etc.; Local air pollution dispersion; Dispersion modelling; Large scale transport and dispersion; Air Quality Standards; Ambient Air Quality Monitoring: Sampling of PM_{2.5} and PM₁₀, NO₂, SO₂, O₃, CO, Heavy metals; Analysis, Quantification of emissions; Air quality monitoring at work place; Environmental noise, odour and their control measures; Stationary source monitoring and control approaches: Monitoring, Source reduction, Management and operational Changes, fuel and fuel modifications, Combustion modifications, Gas control techniques, Particulate control techniques; Mobile source monitoring and control approaches: Emissions in spark ignited (SI)engines, Diesel Ignition emission characteristics, Hybrid vehicles, Electric vehicles , Monitoring, Emission Control techniques: Engine operation and design, engine-based control systems, Exhaust gas control systems.

Teaching /Learning Methods:

A combination of lectures, laboratory and field practical sessions, computer based learning, self-studies, field based assignments and small group discussions.

Assessment Strategy: Continuous assessment and end of semester examination. Percentage given for each sub component indicates the percent contribution to the final marks.

6 1	1				
Continuous Assessment		Final Assessment			
30 %		70 %			
Details:		Theory	Practical	Other	
Quizzes	10	70	-	-	
Assignments	10				
Practical and Field reports	10				

Recommended Readings:

- 1. Griffin R.D. (2013). Principles of Air Quality Management 2nd Edition. CRC press.
- 2. Godish, T. (2003). Air Quality. 4th Edition. Lewis Publishers. INC.
- 3. Nesaratnam S.T and Taherzadeh S. (2014). Air Quality Management, John Wiley & Sons, NJ.
- 4. Current review papers on air quality management published by reputed publishers.