Semester:	6				
Course Code:	ENCM 42732				
Course Name:	Statistics for Environmental Studies				
Credit Value:	2				
Status	Compulsory for BSc Honours in ENCM degree				
Pre-requisites	ENCM 22802				
Co-requisites	None				
Hourly Breakdown	Theory	Practical	Independent Learning		
	20	30	50		

Intended Learning Outcomes:

After completion of this course unit, the student will be able to;

- 1. define relevant statistical terms,
- 2. calculate descriptive statistics of biological data,
- 3. explain properties of selected probability distributions,
- 4. state assumptions and decision rules of relevant statistical tests,
- 5. apply appropriate statistical methods for the analysis of biological data, and
- 6. analyze biological data using Minitab and Primer software packages to test hypotheses, and
- 7. interpret results and make conclusions.

Course Content:

Introduction to statistics and types of environmental data. Definitions: variable, population, sample, sampling unit, observation. Scales of measurement. Sampling theory. Descriptive statistics, confidence limits and population parameters. Estimation of frequencies, frequency histograms and bar graphs. Probability and cumulative density functions. Probability distributions: binomial, hypergeometric, Poisson and Chi-square; F-distribution, normal distribution, t-distribution. Testing the normality of data, data transformation methods. Statistical decision theory. Parametric and non-parametric tests: chi-square tests, z-test, Student's t-test, paired t-test, Mann-Whitney Utest, Wilcoxon signed-rank test, Pearson's Product moment correlation analysis, Spearman's rank correlation, Simple linear regression, One-way and Two-way Analysis of Variance. Comparison of means: Tukey's test, Scheffe's method, Dunnett's test. Kruskal-Wallis test. Probit analysis. Introduction to multivariate statistics: Similarity matrix, Cluster analysis, Multi-dimensional Scaling and Principal Component Analysis. Laboratory sessions on the testing of hypotheses of the above-mentioned statistical tests for the given data sets using Minitab and Primer software packages, interpretation of results and making conclusions

Teaching /Learning Methods:

A combination of lectures, Practical sessions, computer based learning, self-studies, practical based assignments and small group discussions, laboratory reports.

Assessment Strategy: Continuous assessment and end of semester examination. Percentage						
given for each sub-component indicates the percent contribution to the final marks.						
Continuous Assessment	Final Assessment					
20 %	80 %					
Details:	Theory	Practical	Other			
Assignments 10	60	20				
Practical reports 10						

Recommended Readings:

- 1. Fowler, J. & L. Cohen (1994). Practical Statistics for Field Biology, 2nd edition, Open University Press.
- 2. Weaver, K. F., V. Morales, S. L. Dunn, K. Godde & P. F. Weaver (2017). An Introduction to Statistical Analysis in Research: with applications in the biological and life Sciences. John Wiley & Sons.
- 3. Sokal, R. R. & F. Rohlf (1995). Biometry. W.H. Freeman and company.
- 4. Zar, J. H. (2010). Biostatistical analysis. 5th Edition. Pearson