Semester:	4				
Course Code:	ENCM 22802				
Course Name:	Basic Statistics for Environmental Studies				
Credit Value:	2				
Status:	Compulsory				
Pre-requisite:	None				
Co-requisite:	None				
Hourly Breakdown:	Theory	Practical	Independent Learning		
	20	30	50		

Intended Learning Outcomes:

After completion of this course unit, the student will be able to;

- 1. describe the importance of statistical methods in making decisions,
- 2. calculate descriptive statistics of data,
- 3. select and apply an appropriate statistical test for analysis of data,
- 4. analyze data using appropriate statistical software packages, and,
- 5. interpret results and make conclusions.

Course Content:

Introduction to Statistics, Elements of descriptive and inferential statistics. Data collection by Probability sampling techniques; simple random sampling, stratified sampling, cluster sampling, and systematic sampling. Introduction to Population and sample, Data collection by Non-probability sampling techniques; convenient sampling, judgmental sampling, snowball sampling, and volunteer sampling. Data display by graphical and tabular methods. Introduction to the normal distribution, Basic statistical tests for data analysis; z-test, t-tests, one-way analysis of variance (ANOVA), chi-square test, and correlation analysis.

Practical sessions on estimating descriptive statistics of given data sets, testing for normal distribution, and Analysis of given data sets using MINTAB/R software.

Teaching /Learning Methods:

Interactive Teaching Sessions, Computer lab sessions, Supplementary Lecture Support Materials and reference materials are distributed through CAL and Individual lab reports.

Assessment Strategy:

Continuous assessment and end of semester examination. Percentage given for each subcomponent indicates the percent contribution to the final marks

Continuous Assessment 20 %	Final Assessment 80 %		
Details:	Theory	Practical	Other
Practical reports 10	65	15	-

Recommended Readings:

- Fowler, J. & L. Cohen (1994). Practical Statistics for Field Biology, 2nd edition, Open University Press.
- 2. Weaver, K. F., V. Morales, S. L. Dunn, K. Godde & P. F. Weaver (2017). An Introduction to Statistical Analysis in Research: with applications in the biological and life Sciences. John Wiley & Sons.
- **3.** Zar, J. H. (2010). Biostatistical analysis. 5th Edition. Pearson